
CS 4100: Introduction to AI

Wayne Snyder
Northeastern University

Lecture 23 – Deep Learning – RNNs, Encoder-Decoders, Transformers

Plan for this week

Plan for this Lecture:

• RNNs, GRNNs, GRUs, LSTMs
• Building Language Models with RNNs
• Encoder-Decoders
• Adding Atttention

• Next Lecture: Optional! On Transformers and
Large Language Models (BERT, GPT, etc.)

• Last lecture: The possibility of general machine
intelligence; machine consciousness

Basic RNN layer: Recurrent data path serves as a memory between time steps for
sequence data:

Recurrent Neural Networks: RNNs, GRUs, LSTMs

Gated Recurrence Unit layers add individual units to decide
• The activation (output) signal;
• How the memory is used in creating the current activation;
• What to remember from the current time step:

Recurrent Neural Networks: RNNs, GRUs, LSTMs

Long Short Term Memory layers use a separate “carry” path for the memory, 4 gates, and
calculate the activation from the memory and the current inputs:

Recurrent Neural Networks: RNNs, GRUs, LSTMs

How are Networks with Recurrent Layers Designed?

Deep Networks

Generally, networks for
sequence data such
as text have recurrent
layers processing the
sequence, and feed
forward layers
interpreting and
producing output such
as a classification.

GRU

GRU

GRU

FFNN

FFNN

FFNN

FFNN

Recurrent Neural Networks: RNNs, GRUs, LSTMs

Unrolling a deep RNN
network reveals a very
complicated design!

Recurrent Neural Networks: RNNs, GRUs, LSTMs

Unrolling a deep RNN
network reveals a very
complicated design!

Recurrent Neural Networks: RNNs, GRUs, LSTMs

Does this solve all our problems? Unfortunately not, due to the
vanishing gradients problem: unrolling through time makes the
network very large and preserving information (through weights)
over long distances is a problem:

Recurrent Neural Networks: RNNs, GRUs, LSTMs

MANY different designs
have been proposed,
with advantages and
disadvantages.

Idea 1: Tree-structured
network which combines
lower levels using some
aggregating function
(weighted) sum, perhaps
controlled by a gate.

Recurrent Neural Networks: RNNs, GRUs, LSTMs

MANY different designs have
been proposed, with advantages
and disadvantages.

Idea 2: Apply 1D Convolutions
to the RNN layers.

LSTM

LSTM

1D CNN

FFNN

FFNN

FFNN

1D CNN

Recurrent Neural Networks: RNNs, GRUs, LSTMs

MANY different designs have
been proposed, with advantages
and disadvantages.

Idea 3: Bidirectional RNN
(BRNN): Combine result of
running two RNNs on forward
and reverse sequence
simultaneously. Results are fed
to the next layer, usually by
concatenation.

Recurrent Neural Networks: RNNs, GRUs, LSTMs

Training RNNs with Sequence Data: Classification

NOTE: From now
on, we’ll show
every RNN unrolled
through time,
though you should
always remember
that there is a for
loop controlling the
whole process.)

Example 1: Sentence classification

Easy! Just use the last output and proceed as usual!

Recurrent Neural Networks: RNNs, GRUs, LSTMs

NOTE: From now
on, we’ll show
every RNN unrolled
through time,
though you should
always remember
that there is a for
loop controlling the
whole process.)

Example 2: Part-of-Speech Tagging

In POS Tagging, the input is a sentence, and the output is a
sequence of multinomial classifications into parts of speech:

Training RNNs with Sequence Data: POS Tagging

Recurrent Neural Networks: RNNs, GRUs, LSTMs

Example 3: A sentence generator using the trained RNN can generate sentences by
picking the most likely next word in each step, until it generates the end-of-sentence
token </s>:

Recurrent Neural Networks: RNNs, GRUs, LSTMs

An important variation of the autoregressive generator is to give the RNN a context at
the beginning; here we give the generator the start-of-sentence token <s> (which says
that the next word is one that must follow <s>, duh...).

<s>

Recurrent Neural Networks: RNNs, GRUs, LSTMs

But this context could be anything! For example, we could give it an integer:

-1 Negative movie review
0 Neutral movie review
1 Positive movie review -1

Worst movie I’ve ever seen !

0

It was ok not so good .

Recurrent Neural Networks: RNNs, GRUs, LSTMs

Or it could be an author to imitate:

Shakespeare

How now sir hark ye well

Homer

The hollow ships of the Achaeans

Recurrent Neural Networks: RNNs, GRUs, LSTMs

Digression on a significant problem (and solution) in language
generation: The RNN makes local decisions about the most likely
next word. However, a series of such local decisions will not
necessarily find the globally most likely sentence (cf. gradient
descent, which has the same problem).

The usual optimization is Beam Search:

1. Pick the “width of the beam” N (at each iteration, we will store
the N most likely sequences of words);

2. Generate a list of the N most likely words to start a sentence,
and concatenate them with <s>;

3. At each iteration, examine ALL possible next words in the
sequence; toss all but the N most likely sequences;

4. Repeat until </s> is generated. Return the most likely sentence.

Note:
sentences
might be
different
lengths; stop
when
sequence
ends in </s>.

Recurrent Neural Networks: RNNs, GRUs, LSTMs

Example of Beam Search with N = 2 using letters
instead of words:

Result:
AED

Punchline: Beam search is not guaranteed to find the optimal sequence, but as a
heuristic it works very well. There is an obvious efficiency/performance tradeoff.
Common values of N are 10, 100, 1000.

Recurrent Neural Networks: RNNs, GRUs, LSTMs

The Encoder-Decoder architecture combines sequence-to-one and a one-to-sequence
models:

The encoder is “just” an ordinary RNN, producing a context as its result;
The decoder is a generator, producing the most likely output given the context.

Recurrent Neural Networks: RNNs, GRUs, LSTMs

Bottleneck: All information about the
meaning of the input has to be
encoded in the context vector!

Problem: If we want to do translation between languages, the context has to hold a LOT of
information! This motivates the notion of attention and the transformer model we will study
next time.

Recurrent Neural Networks: RNNs, GRUs, LSTMs

To see the motivation for Attention, consider translating “Separate models
are trained in the forward and backward directions.” into various
languages....

Deep Learning: The Attention Architecture

Separate models are trained in the forward and backward directions.

Notice that, as with most modern languages, the words have a similar
sequential order, but there is some variation in position:

Machine Translation with BRNN

French:

Spanish

Los modelos separados se entrenan en las direcciones hacia adelante
y hacia atrás.

Separate models are trained in the forward and backward directions.

Des modeles séparés sont formés dan les directions avant et arrière.

Deep Learning: The Attention Architecture

A BRNN can help with this problem, because when it creates the activation vector
at one point in the sequence, it has access to the backward and forward context:

0

Machine Translation with BRNN

Deep Learning: The Attention Architecture

0

However, the ability to remember context ”fades” the farther you are from the current
activation, and it would be useful to have more control of specific words in the forward
and backward context.

Machine Translation with BRNN

Deep Learning: The Attention Architecture

Attention refers the ability to focus on particular words in the backward and forward
context; the pattern of what words matter in which context can be learned by the
network. The pattern can be represented by a probability distribution over the sequence
of input tokens:

[0.005, 0.1, 0.02, 0.25, 0.16, 0.1, 0.26, 0.105, 0.0]

Attention Weights

Machine Translation with BRNN and Attention

Deep Learning: The Attention Architecture

The basic idea of attention is to train a FFNN to produce these attention weights for
each output token; the resulting 2D matrix of attention weights shows the relationship
between the words in the input sentence and those in the output sentence.

Machine Translation with BRNN and Attention

Deep Learning: The Attention Architecture

We add a FFNN between
the encoder and the
decoder to calculate the
attention vector a<i> for
each output token.

Input to FFNN is output
vector h from Encoder
and activation vector s<i-

1> from Decoder.

Attention weight vector
a<i> is softmax of output
e<i> from FFNN.

Element-wise product of
a<i> and h produces the
context vector c<i>.

Machine Translation with BRNN and Attention

Deep Learning: The Attention Architecture

Machine Translation with BRNN and Attention

Deep Learning: The Attention Architecture

Machine Translation with BRNN and Attention

Deep Learning: The Attention Architecture

Machine Translation with BRNN and Attention

Deep Learning: The Attention Architecture

Machine Translation with BRNN and Attention

Deep Learning: The Attention Architecture

Machine Translation with BRNN and Attention

Deep Learning: The Attention Architecture

Machine Translation with BRNN and Attention

Deep Learning: The Attention Architecture

Machine Translation with BRNN and Attention

Deep Learning: The Attention Architecture

Displaying the activation matrix shows how attention was applied to the translation:

Machine Translation with BRNN and Attention

Deep Learning: The Attention Architecture

Attention can be used in many other contexts such as Automatic Speech
Recognition and Image Captioning:

Machine Translation with BRNN and Attention

Deep Learning: The Attention Architecture

