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Lecture 23 — Deep Learning — RNNs, Encoder-Decoders, Transformers




Plan for this week

Plan for this Lecture:

 RNNs, GRNNs, GRUs, LSTMs

* Building Language Models with RNNs
* Encoder-Decoders

* Adding Atttention

* Next Lecture: Optional! On Transformers and
Large Language Models (BERT, GPT, etc.)

e Last lecture: The possibility of general machine
intelligence; machine consciousness



Recurrent Neural Networks: RNNs, GRUs, LSTMs

Basic RNN layer: Recurrent data path serves as a memory between time steps for
sequence data:
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Recurrent Neural Networks: RNNs, GRUs, LSTMs

Gated Recurrence Unit layers add individual units to decide

* The activation (output) signal;

* How the memory is used in creating the current activation;
*  What to remember from the current time step:
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Recurrent Neural Networks: RNNs, GRUs, LSTMs

Long Short Term Memory layers use a separate “carry” path for the memory, 4 gates, and
calculate the activation from the memory and the current inputs:

[step |
step




Recurrent Neural Networks: RNNs, GRUs, LSTMs
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How are Networks with Recurrent Layers Designed? softmax
| FENN
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Deep Networks 7]
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Generally, networks for
sequence data such

as text have recurrent -
layers processing the
sequence, and feed
forward layers ]
interpreting and
producing output such
as a classification.

EENN

o3

—ro-o{f

<t>



Recurrent Neural Networks: RNNs, GRUs, LSTMs

Unrolling a deep RNN ==
network reveals a very | el
complicated design! v w




Recurrent Neural Networks: RNNs, GRUs, LSTMs
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Recurrent Neural Networks: RNNs, GRUs, LSTMs

Does this solve all our problems? Unfortunately not, due to the
vanishing gradients problem: unrolling through time makes the
network very large and preserving information (through weights)
over long distances is a problem:

Softmax Layer
Recurrent Layer
Recurrent Layer

Input Layer

Vanishing Gradient: where the contribution from the earlier steps

becomes insignificant in the gradient for the vanilla RNN unit.



Recurrent Neural Networks: RNNs, GRUs, LSTMs

MANY different designs —
have been proposed, .
with advantages and j L
disadvantages.

Idea 1: Tree-structured - T [E— _ | |
network which combines _ _ _
lower levels using some T =L T T
ageregating function - v d wd v - | md i wd
(weighted) sum, perhaps

controlled by a gate. X x Xl




Recurrent Neural Networks: RNNs, GRUs, LSTMs

y

softmax

FENN

FENN
MANY different designs have
been proposed, with advantages EENN
and disadvantages.

1D CNN
Idea 2: Apply 1D Convolutions

to the RNN layers. 1D CNN



Recurrent Neural Networks: RNNs, GRUs, LSTMs

MANY different designs have
been proposed, with advantages
and disadvantages.

Idea 3: Bidirectional RNN
(BRNN): Combine result of
running two RNNs on forward
and reverse sequence
simultaneously. Results are fed
to the next layer, usually by
concatenation.

T

Forward Backward
RNN RNN
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concatenated
/—.U outputs

(w1
e Te—

B b

IJTOICENE] A bidirectional RNN. Separate models are trained in the forward and backward
directions, with the output of each model at each time point concatenated to represent the
bidirectional state at that time point.




Recurrent Neural Networks: RNNs, GRUs, LSTMs

Training RNNs with Sequence Data: Classification

Example 1: Sentence classification

Easy! Just use the last output and proceed as usual!
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Sequence classification using a simple RNN combined with a feedforward net-
work. The final hidden state from the RNN is used as the input to a feedforward network that
performs the classification.

NOTE: From now
on, we’ll show
every RNN unrolled
through time,
though you should
always remember
that there 1s a for
loop controlling the
whole process.)



Recurrent Neural Networks: RNNs, GRUs, LSTMs

Training RNNs with Sequence Data: POS Tagging

Example 2: Part-of-Speech Tagging

In POS Tagging, the input is a sentence, and the output is a NOTE: From now
sequence of multinomial classifications into parts of speech: on, we’ll show
every RNN unrolled
mgnac  NNP MD VB 1 h through time,
4 3 though you should

I

Softmaxover(
wo | il J( dls J( always remember

Ll adUln
RNN Vh[}] h J-\ J-T-‘ JL {:I that there 1s a for
-

Layer(s) - loop controlling the

&
# * # * # whole process.)
Embeddings e

Words Janet will back the bill

Part-of-speech tagging as sequence labeling with a simple RNN. Pre-trained
word embeddings serve as inputs and a softmax layer provides a probability distribution over
the part-of-speech tags as output at each time step.




Recurrent Neural Networks: RNNs, GRUs, LSTMs

Example 3: A sentence generator using the trained RNN can generate sentences by
picking the most likely next word in each step, until it generates the end-of-sentence
token </s>:

//j /’j //j
SampledWord So | long | and | ?
| N
oma () | Gl | (D) | (@)
; ! 3 ! 3 ! 3
) I I
| I I
[RNN : — |-
i L [l 4
| | |
Embedding : : :
T
Input Word <s> ! ,So : /I'ong ! and
| P d | NG Vi
\7 \7 \7
Autoregressive generation with an RNN-based neural language model.



Recurrent Neural Networks: RNNs, GRUs, LSTMs

An important variation of the autoregressive generator 1s to give the RNN a context at
the beginning; here we give the generator the start-of-sentence token <s> (which says
that the next word 1s one that must follow <s>, duh...).

//j /’j //j
SampledWord So | long | and | ?
| N
I
sormax (o) | Gl | Gl | ()
) : ) : 3 : )
I I I
I I I
[RNN ; i
¥ F L F i F
I I I
_ Embedding : : :
S e [ [ !
\\\\\\ I I
InputWord <S> ! So | long ! and
A v '
| P d | NG Vi
\7 \7 \7
QTR Autoregressive generation with an RNN-based neural language model.



Recurrent Neural Networks: RNNs, GRUs, LSTMs

But this context could be anything! For example, we could give it an integer:

_1 Negative movie review WOI‘St mOVie I,Ve ever seen
0 Neutral movie review
1 Positive movie review

It was ok not so good




Recurrent Neural Networks: RNNs, GRUs, LSTMs

Or it could be an author to imitate:
How now sir hark ye well

Shakespeare —

The hollow ships of the Achaeans

Homer —




Recurrent Neural Networks: RNNs, GRUs, LSTMs

Digression on a significant problem (and solution) in language
generation: The RNN makes local decisions about the most likely
next word. However, a series of such local decisions will not
necessarily find the globally most likely sentence (cf. gradient
descent, which has the same problem).

The usual optimization is Beam Search:

1. Pick the “width of the beam” N (at each iteration, we will store
the N most likely sequences of words);

2. Generate a list of the N most likely words to start a sentence,
and concatenate them with <s>;

3. At each iteration, examine ALL possible next words in the
sequence; toss all but the N most likely sequences;

4. Repeat until </s> is generated. Return the most likely sentence.

Embedding

Note:
sentences
might be
different
lengths; stop
when
sequence
ends 1n </s>.




Recurrent Neural Networks: RNNs, GRUs, LSTMs

Sampled Word So/‘i Iong/‘ and /‘E ?
. . - '
Example of Beam Search with N = 2 using letters (LR
instead of words: e 8188
Input Word <8> /,SO /I'ong /’and
b4 ABA Autoregressive generation with an RNN-based neural language model.
i /_w ABB
E—» AC / N\ (e <END>
N : 4 ABE
T /: \\ AD
U Z - AB-END
o4 . A-END N4
<START>& R Result:
\>* D / <END>
N ¢ % /[ w AEB " AED

N\
END \3 /: CB N
/- \ AED 02
O %

NG
\* CD

" CE
Punchline: Beam search 1s not guaranteed to find the optimal sequence, but as a

heuristic it works very well. There is an obvious efficiency/performance tradeoff.
Common values of N are 10, 100, 1000.



Recurrent Neural Networks: RNNs, GRUs, LSTMs

The Encoder-Decoder architecture combines sequence-to-one and a one-to-sequence
models:

The encoder is “just” an ordinary RNN, producing a context as its result;
The decoder 1s a generator, producing the most likely output given the context.

TG RUIR]  The encoder-decoder architecture. The context is a function of the hidden
representations of the input, and may be used by the decoder in a variety of ways.



Recurrent Neural Networks: RNNs, GRUs, LSTMs

Problem: If we want to do translation between languages, the context has to hold a LOT of
information! This motivates the notion of attention and the transformer model we will study
next time.

Given the diagram below, what problem do you foresee when translating

progressively longer sentences? . .
Bottleneck: All information about the

Only use neural nets meaning of the input has to be

encoded in the context vector!

Jiri naani netwok nu



Deep Learning: The Attention Architecture

To see the motivation for Attention, consider translating “Separate models
are trained in the forward and backward directions.” into various

languages....

Go g|e translate into french X & @ Q
2 Al @) Images  Shopping [ Books (3] Videos : More Tools
About 1,530,000,000 results (0.69 seconds)
English - detected v & French v
Separate models X Des modéles
are trained in the séparés sont formés
forward and dans les directions
backward avant et arriére.
directions.
4 0 D)

Open in Google Translate + Feedback



Deep Learning: The Attention Architecture

Machine Translation with BRNN
Notice that, as with most modern languages, the words have a similar
sequential order, but there 1s some variation in position:
French:

Des modeles séparés sont formes dan les directions avant et arriere.

XS sl

Separate models are trained in the forward and backward directions.
Spanish

Los modelos separados se entrenan en las direcciones hacia adelante

XSS =

Separate models are trained in the forward and backward directions.




Deep Learning: The Attention Architecture

Machine Translation with BRNN

A BRNN can help with this problem, because when it creates the activation vector
at one point in the sequence, it has access to the backward and forward context:

. 0 |
C T I R ol
EE} i RNN 2 H
([\ RNN 1
\A
Y B ¥ :

TR BY A bidirectional RNN. Separate models are trained in the forward and backward
directions, with the output of each model at each time point concatenated to represent the
bidirectional state at that time point.



Deep Learning: The Attention Architecture

Machine Translation with BRNN

However, the ability to remember context ’fades” the farther you are from the current

activation, and it would be useful to have more control of specific words in the forward
and backward context.

Y3
1

TERIES

[_[;]- I RNN 2 E]
( : RNN 1

A bidirectional RNN. Separate models are trained in the forward and backward

directions, with the output of each model at each time point concatenated to represent the
bidirectional state at that time point.

o




Deep Learning: The Attention Architecture

Machine Translation with BRNN and Attention

Attention refers the ability to focus on particular words in the backward and forward
context; the pattern of what words matter in which context can be learned by the
network. The pattern can be represented by a probability distribution over the sequence

of input tokens:
[ ]
] ]

[ 0.005, 0.1, 0.02, 0.25, 0.16, 0.1, 0.26, 0.105, 0.0 ]

Attention Weights



Deep Learning: The Attention Architecture

Machine Translation with BRNN and Attention

The basic idea of attention is to train a FFNN to produce these attention weights for
each output token; the resulting 2D matrix of attention weights shows the relationship
between the words in the input sentence and those in the output sentence.

agreement
European
Economic

Area
signed

The
on

the
was

in
August
1992
<end>

L
accord

sur

la

zone
économique
européenne
Bl

été

signe

en

aolt

1992

<end>




Deep Learning: The Attention Architecture

Machine Translation with BRNN and Attention

<1> <2> <3>

<i—1>

We add a FFNN between S0 1 _I 52 RNN Decoder
the encoder and the ; (unrolled)
<1> <> <3>
decoder to calculate the ' | c c c
attention vector a<* for Attention ¢ =hxa~”
Mechanism
each output token.

Input to FFNN is output
vector h from Encoder
and activation vector s
1> from Decoder.

o . . - :
<> = (a]<:> ; az<x> , a3<:> , a§:>)

Softmax

<i> | [ | |
e 12 - (e]<1> : E,,2<1> A e§1> - BZD)

FFNN

Attention weight vector
<i> ; i—

a ‘ 1s softmax of output s<i-1> =, B i)

e~ from FFNN.

Element-wise product of //"O N (B)RNN Encoder
a<> and h produces the (unrolled)
context vector ¢,




Deep Learning: The Attention Architecture

Machine Translation with BRNN and Attention

(B)RNN Encoder
(unrolled)

<1> <2> <3>
y y y
S<i—l>
AY S1 -L| S
0 S e B 2] |
L | J [
<> <> c<3>
Attention c<” = h % a<>
Mechanism
By
(*)
A B <i> <i> <i> <i>
a~” = (a;"”,a;"”,a3"”,a;"”)
Softmax
e<i> = (e]<:> X e2<i> , e3<i> 3 eZi>)
FFNN
S<i—1>
h = (hy, hy, h3, hy)

RNN Decoder
(unrolled)



Deep Learning: The Attention Architecture

Machine Translation with BRNN and Attention

RNN Decoder
(unrolled)

<1>

<1>

y<1> y<2> y<3>
S<i—l>
AY S1 _Ll S
0 ° mmEm 2] |
L J [
c<1> c<2> c<3>
Attention <> = h % a<>
Mechanism
(%)
/<.> A _ , A Attention Weights
a i = (a]<’> 5 a2<l> : a’;<1> - a§l>) —
Softmax \ aj 1> a§1 >
e<i> = (e]</> g e§’> , e§i> ] e§’>)
FFNN
S<i—1>
h = (hy, hy, h3, hy)

(B)RNN Encoder

(unrolled)



Deep Learning: The Attention Architecture

Machine Translation with BRNN and Attention

y<1> y<2> y<3>
S<i—l>
S S1 -L| S
0 a [ 1 2 [ |
I | [
C<1> c<2> c<3>
Attention <> = h % a<>
Mechanism
(%)
/<l_> S Attention Weights
a =(a]I ’821 9a3' ,84’ ) —
Softmax \ af 1> a§1 =
e<> = (e]<:> X e2<i> , e3<i> . eZi>)
FFNN
S<i—1>
h = (hy, hy, h3, hy)
/I'O'[\ I (B)RNN Encoder
| 1 [ (unrolled)
X X X X

RNN Decoder

(unrolled)

<1>

a;

<1>




Deep Learning: The Attention Architecture

Machine Translation with BRNN and Attention

y<1> y<2> y<3>
S<i—l>
0 50 oy |1 T_lsz | | RNN Decoder
L1 | | (unrolled)
<I> <2> <3>
C (& (&
Attention <> = h % a<>
Mechanism
(%)
/<.> A _ , A Attention Weights
a i — (a]<’> 5 az<l> : a»;<l> - a‘fl))
: N
Softmax a;1> a§1> <1> azl>
e<i> — (el<l> . e§I> ’ e§i> , e§I>) af2> a§2> = a22>
FFNN
S<i—1>
h = (hy, hy, h3, hy)

(B)RNN Encoder

(unrolled)



Deep Learning: The Attention Architecture

Machine Translation with BRNN and Attention

<1> <2> <3>
y y y
S<i—l>
s s _|s
0 0 ey |°1 e | | RNN Decoder
L1 | | (unrolled)
c<1> c<2> c<3>
Attention <> = h % a<>
Mechanism
(%)
/<l_> S Attention Weights
a~” = (a;"”,a;"”,a3"”,a;"”)
N
Softmax a;1> a§1> <1> azl>
e<i> — (e]<l>’e2<i>’e3<i>,ezi>) af2> a§2> = azz>
FFNN
S<i—1>
h = (hy, hy, h3, hy)
/I'O'[\ I (B)RNN Encoder
| [ [ (unrolled)
X X X X



Deep Learning: The Attention Architecture

Machine Translation with BRNN and Attention

<1> <2> <3>
y y y
S<i—l>
0 50 oy |1 T_lsz | | RNN Decoder
L1 | | (unrolled)
c<1> c<2> c<3>
Attention <> = h % a<>
Mechanism
(%)
/<.> A _ , A Attention Weights
a i — (a]<’> 5 az<l> : a»;<l> - a‘fl))
Softmax a;1> a§1> <1> azl>
e = (e]<’> . e§’> . e§’> . e§’>) a > <2> a>
1 D) 4
FFNN
<3> <3> <3> <3>
a; a, a,
S<i—1>
h = (hy, hy, h3, hy)

(B)RNN Encoder

(unrolled)



Deep Learning: The Attention Architecture

Machine Translation with BRNN and Attention

<I> <2> <3>
y y y
S<i—l>
0 50 oy |1 T_lsz | | RNN Decoder
L1 | I (unrolled)
c<1> c<2> C<3>
Attention <> = h % a<>
Mechanism
(%)
/<.> , _ ) , Attention Weights
2> = (a]<1> ; az<x> ) a3<1> ’ a§:>)
Softmax a;1> a§1> <1> a21>
S i i |
e~ = (e1<1>’e2<1>’ e3<1>, eZD) aT2> a§2> <2> a22>
FFNN
<3> <3> <3> <3>
a a; ay
S<i—1>
h = (hy, hy, h3, hy)
/IVO‘I\ I (B)RNN Encoder
| 1 [ (unrolled)
X X X X



Deep Learning: The Attention Architecture
Machine Translation with BRNN and Attention

Displaying the activation matrix shows how attention was applied to the translation:
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Deep Learning: The Attention Architecture

Machine Translation with BRNN and Attention

Attention can be used in many other contexts such as Automatic Speech
Recognition and Image Captioning:

woman(0.54) is(0.37),

frisbee(0.37), in(0.21)

e A & P g
i 5 (3
y | . .

park(0.35) (0.33)

FDHQCO0_SX209: Michsel colored the bedroom wall with cray

™ T T T T T T T T T ™

Figure 3: Alignments produced by the baseline model. The vertical bars indicate ground truth
phone location from TIMIT. Each row of the upper image indicates frames selected by the attention
mechanism to emit a phone symbol. The network has clearly learned to produce a left-to-right
alignment with a tendency to look slightly ahead, and does not confuse between the repeated “kcl-
k" phrase. Best viewed in color.

Fig. 7. "A woman is throwing a frisbee in a park." (Image source: Fig. 6(b) in Xu



