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Plan for this week

Plan for this Lecture:

• RNNs, GRNNs, GRUs, LSTMs
• Building Language Models with RNNs
• Encoder-Decoders
• Adding Atttention

• Next Lecture:  Optional!  On Transformers and 
Large Language Models (BERT, GPT, etc.)

• Last lecture:  The possibility of general machine 
intelligence; machine consciousness



Basic RNN layer: Recurrent data path serves as a memory between time steps for 
sequence data:
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Gated Recurrence Unit layers add individual units to decide
• The activation (output) signal;
• How the memory is used in creating the current activation;
• What to remember from the current time step: 
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Long Short Term Memory layers use a separate “carry” path for the memory, 4 gates, and 
calculate the activation from the memory and the current inputs:
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How are Networks with Recurrent Layers Designed?

Deep Networks

Generally, networks for 
sequence data such 
as text have recurrent 
layers processing the 
sequence, and feed 
forward layers 
interpreting and 
producing output such
as a classification. 
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Unrolling a deep RNN 
network reveals a very
complicated design!

Recurrent Neural Networks: RNNs, GRUs, LSTMs



Unrolling a deep RNN 
network reveals a very
complicated design!
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Does this solve all our problems? Unfortunately not, due to the 
vanishing gradients problem: unrolling through time makes the 
network very large and preserving information (through weights) 
over long distances is a problem:
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MANY different designs 
have been proposed, 
with advantages and 
disadvantages. 

Idea 1:  Tree-structured 
network which combines 
lower levels using some 
aggregating function 
(weighted) sum, perhaps 
controlled by a gate. 
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MANY different designs have 
been proposed, with advantages 
and disadvantages. 

Idea 2:  Apply 1D Convolutions 
to the RNN layers. 
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MANY different designs have 
been proposed, with advantages 
and disadvantages. 

Idea 3:  Bidirectional RNN 
(BRNN): Combine result of 
running two RNNs on forward 
and reverse sequence 
simultaneously. Results are fed 
to the next layer, usually by 
concatenation.  
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Training RNNs with Sequence Data: Classification

NOTE: From now 
on, we’ll show 
every RNN unrolled 
through time, 
though you should 
always remember 
that there is a for
loop controlling the 
whole process.) 

Example 1:  Sentence classification

Easy!  Just use the last output and proceed as usual!
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NOTE: From now 
on, we’ll show 
every RNN unrolled 
through time, 
though you should 
always remember 
that there is a for
loop controlling the 
whole process.) 

Example 2:  Part-of-Speech Tagging

In POS Tagging, the input is a sentence, and the output is a 
sequence of multinomial classifications into parts of speech:

Training RNNs with Sequence Data: POS Tagging
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Example 3:  A sentence generator using the trained RNN can generate sentences by 
picking the most likely next word in each step, until it generates the end-of-sentence 
token </s>: 
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An important variation of the autoregressive generator is to give the RNN a context at 
the beginning; here we give the generator the start-of-sentence token <s> (which says 
that the next word is one that must follow <s>, duh...). 

<s>
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But this context could be anything! For example, we could give it an integer:

-1   Negative movie review
0   Neutral movie review
1   Positive movie review -1

Worst    movie    I’ve  ever  seen        !

0

It       was  ok     not   so    good     .
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Or it could be an author to imitate:

Shakespeare

How   now  sir    hark  ye    well

Homer

The  hollow ships of       the    Achaeans
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Digression on a significant problem (and solution) in language 
generation:  The RNN makes local decisions about the most likely 
next word. However, a series of such local decisions will not 
necessarily find the globally most likely sentence (cf. gradient 
descent, which has the same problem). 

The usual optimization is Beam Search:  

1. Pick the “width of the beam” N (at each iteration, we will store 
the N most likely sequences of words);

2. Generate a list of the N most likely words to start a sentence, 
and concatenate them with <s>; 

3. At each iteration, examine ALL possible next words in the 
sequence; toss all but the N most likely sequences; 

4. Repeat until </s> is generated.  Return the most likely sentence. 

Note: 
sentences 
might be 
different 
lengths; stop 
when 
sequence 
ends in </s>. 
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Example of Beam Search with N = 2 using letters 
instead of words:

Result:  
AED

Punchline: Beam search is not guaranteed to find the optimal sequence, but as a 
heuristic it works very well. There is an obvious efficiency/performance tradeoff. 
Common values of N are 10, 100, 1000. 
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The Encoder-Decoder architecture combines sequence-to-one and a one-to-sequence 
models:

The encoder is “just” an ordinary RNN, producing a context as its result;
The decoder is a generator, producing the most likely output given the context. 
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Bottleneck: All information about the 
meaning of the input has to be 
encoded in the context vector!

Problem:   If we want to do translation between languages, the context has to hold a LOT of 
information! This motivates the notion of attention and the transformer model we will study 
next time. 
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To see the motivation for Attention, consider translating “Separate models 
are trained in the forward and backward directions.” into various 
languages....
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Separate models are trained in the forward and backward directions. 

Notice that, as with most modern languages, the words have a similar 
sequential order, but there is some variation in position:

Machine Translation with BRNN

French:

Spanish

Los modelos separados se entrenan en las direcciones hacia adelante 
y hacia atrás.

Separate models are trained in the forward and backward directions. 

Des modeles séparés sont formés dan les directions avant et arrière. 
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A BRNN can help with this problem, because when it creates the activation vector 
at one point in the sequence, it has access to the backward and forward context:

0

Machine Translation with BRNN
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0

However, the ability to remember context ”fades” the farther you are from the current 
activation, and it would be useful to have more control of specific words in the forward 
and backward context. 

Machine Translation with BRNN
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Attention refers the ability to focus on particular words in the backward and forward 
context; the pattern of what words matter in which context can be learned by the 
network.  The pattern can be represented by a probability distribution over the sequence 
of input tokens:

[      0.005,       0.1,     0.02,     0.25,     0.16,     0.1,     0.26,    0.105,    0.0     ]

Attention Weights

Machine Translation with BRNN and Attention
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The basic idea of attention is to train a FFNN to produce these attention weights for 
each output token; the resulting 2D matrix of attention weights shows the relationship 
between the words in the input sentence and those in the output sentence.  

Machine Translation with BRNN and Attention
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We add a FFNN between 
the encoder and the 
decoder to calculate the 
attention vector a<i> for 
each output token. 

Input to FFNN is output 
vector h from Encoder 
and activation vector  s<i-

1> from Decoder. 

Attention weight vector 
a<i> is softmax of output 
e<i> from FFNN.

Element-wise product of 
a<i> and h produces the 
context vector c<i>.

Machine Translation with BRNN and Attention
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Machine Translation with BRNN and Attention
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Machine Translation with BRNN and Attention

Deep Learning: The Attention Architecture



Machine Translation with BRNN and Attention

Deep Learning: The Attention Architecture
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Machine Translation with BRNN and Attention
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Machine Translation with BRNN and Attention
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Displaying the activation matrix shows how attention was applied to the translation: 

Machine Translation with BRNN and Attention
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Attention can be used in many other contexts such as Automatic Speech 
Recognition and Image Captioning:

Machine Translation with BRNN and Attention
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